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Abstract

Extreme precipitation can have profound consequences for communities, resulting in nat-

ural hazards such as rainfall-triggered landslides that cause casualties and extensive prop-

erty damage. A key challenge to understanding and predicting rainfall-triggered landslides

comes from observational uncertainties in the depth and intensity of precipitation preced-

ing the event. Practitioners and researchers must select from awide range of precipitation

products, often with little guidance. Here we evaluate the degree of precipitation uncer-

tainty across multiple precipitation products for a large set of landslide-triggering storm

events and investigate the impact of these uncertainties on predicted landslide probability

using published intensity–duration thresholds. The average intensity, peak intensity, dura-

tion, and NOAA-Atlas return periods are compared ahead of 177 reported landslides

across the continental United States and Canada. Precipitation data are taken from four

products that cover disparate measurement methods: near real-time and post-processed

satellite (IMERG), radar (MRMS), and gauge-based (NLDAS-2). Landslide-triggering precip-

itation was found to vary widely across precipitation products with the depth of individual

storm events diverging by as much as 296 mm with an average range of 51 mm. Peak

intensity measurements, which are typically influential in triggering landslides, were also

highly variable with an average range of 7.8 mm/h and as much as 57 mm/h. The two

products more reliant upon ground-based observations (MRMS andNLDAS-2) performed

better at identifying landslides according to published intensity–duration storm thresh-

olds, but all products exhibited hit ratios of greater than 0.56. A greater proportion of land-

slides were predicted when including only manually verified landslide locations. We

recommend practitioners consider low-latency products likeMRMS for investigating land-

slides, given their near-real time data availability and good performance in detecting land-

slides. Practitioners would be well-served considering more than one product as a way to

confirm intense storm signals andminimize the influence of noise and false alarms.
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1 | INTRODUCTION

Precipitation measurements and their uncertainties play a key role in

understanding and mitigating rainfall-triggered landslides because

they drive excess runoff and soil saturation that initiate these natural

disasters (Highland & Bobrowsky, 2008). In spite of the destructive

nature of landslides, which cause tens of thousands of deaths each

year (Froude & Petley, 2018) these events remain challenging to diag-

nose, in part due to uncertainty in antecedent precipitation amounts

(Kirschbaum & Stanley, 2018). There are many other sources of uncer-

tainty that contribute to poor landslide diagnosis and prediction, such

as unknown soil properties, vegetation, and anthropogenic modifica-

tions to surface and subsurface soil structure. However, perhaps the

largest source of uncertainty in estimating landslide probability is

hydrologic uncertainty, defined here as uncertainty in the depth and

intensity of liquid precipitation leading up to the event (Chowdhury &

Flentje, 2002). A confounding factor is the wide array of precipitation

datasets ranging from in situ observations, ground-based radar and

satellite retrievals. This study compares precipitation from various

sources immediately preceding landslide events to assess the implica-

tions of precipitation uncertainty for evaluating landslide hazards.

The precipitation products chosen for this inter-comparison rep-

resent three broad categories of primary measurement techniques:

precipitation gauges, ground-based radar, and microwave satellite.

Precipitation gauges operate by periodically measuring the volume of

precipitation collected at a gauge. Their main strength is that they

directly measure the amount of collected water, but nonetheless

they can suffer from issues of persistent bias driven by under-catch

from wind (Pollock et al., 2018) instrument malfunctions (Duchon

et al., 2014; Duchon & Biddle, 2010), gauges placed too close to other

structures (Vose et al., 2014), and limited spatial representativeness

due to sparse sensor density (Kidd et al., 2017). Despite these limita-

tions, multiple studies (Maggioni et al., 2016; Sapiano & Arkin, 2009)

have found gauge-based data products to have lower biases than

satellite-based products over North America, especially in areas with

complex topography including those where many of the landslides

included in this study took place.

In contrast, ground-based radar detects precipitation indirectly

using the backscatter of radar and can measure subtle variations in

precipitation over regions of several hundreds of square kilometres

(Zhang et al., 2015). Since ground-based radar is an indirect measure-

ment of precipitation, its performance is dependent on skilful conver-

sion of the radar signal to precipitation volume. Beam blockage and

interference from buildings or even insects in the radar's path are

another limitation (Bousquet & Smull, 2003; Fornasiero et al., 2004;

Nikahd et al., 2016). Most ground-based radars use multiple bands of

radar and multiple polarities to compute the raindrop shape and size

distributions used in the processing and limit the impact of known

sources of error, which offers an advantage over other indirect tech-

niques such as some of those incorporated into satellite-based mea-

surements (Chandrasekar et al., 2008).

Satellite techniques vary in terms of which sensors they use to

detect precipitation, including active and passive microwave, infrared,

radar, or any combination. Depending on the sensor type these satel-

lites are deployed in either geostationary or low Earth orbits that cover

particular spatial regions at particular intervals (Huffman et al., 2020).

The key advantage of satellite-based precipitation measurements over

ground-based in situ or radar measurements is that they can deliver

frequent and spatially continuous measurements, although multiple

satellites (Tapiador et al., 2012) with a variety of sensors and orbits

(Ashouri et al., 2015) are required to provide global coverage. For

example, the satellite products used in this analysis incorporate a fleet

of geostationary satellites in addition to a single low Earth orbit refer-

ence satellite (Kidd et al., 2020). Many of the challenges associated

with satellite-based precipitation measurement are related to sensor

calibration and bias-correction relative to ground-based measurements

(Ebert, 2007), as well as the development of algorithms for merging

measurements from diverse sources (Huffman et al., 2007; Skofronick-

Jackson et al., 2017). Estimating rain drop size distributions also pre-

sents a challenge when measuring precipitation with satellite-based

microwave instruments, though it can be at least partially addressed

through the use of either ground- or satellite-based radar.

Existing precipitation products have been compared and evalu-

ated using a number of metrics in prior studies, for example annual

and monthly totals (Adler et al., 2001) or the frequency of wet or dry

days (Manzanas et al., 2014). Less attention has been paid to metrics

most directly useful for analysing rainfall-triggered landslides. While

many mudslides or debris flows are triggered by short, intense precipi-

tation events, other landslides such as shallow slope failures or soil

slips are triggered by saturation of the soil column that can develop

over a longer period of time (Cannon & Gartner, 2005). In both cases

the triggering event occurs over the course of hours or days rather

than months or years, and for some landslides the critical time period

may be less than an hour.

Published inter-comparisons of precipitation products based on dif-

ferent measurement techniques typically focus on specific applications

such as evaluating grid-based products over complex terrain, portraying

hydrologic phenomena (Ahmadalipour & Moradkhani, 2017), climate

model downscaling efforts (Gutmann et al., 2014; Wang et al., 2020), or

for merging data from multiple sensors together (Beck et al., 2017). A

general review of 30 gauge-based, satellite-based, and reanalysis global

precipitation products by Sun et al. (2018) compared systematic and ran-

dom errors for daily and annual precipitation, reporting large disagree-

ments even within the same class of product, that is, a deviation of

300 mm in annual precipitation over global land among satellite prod-

ucts. They conclude that the placement and spatial density of gauges

accounts for many of the errors in gauge-based or gauge-corrected prod-

ucts, further suggesting that cross validation across multiple datasets is

crucial to account for errors. Adler et al. (2003) similarly analysed

31 gauge-based, satellite-based, model-based, and climatological datasets

in terms of monthly precipitation, finding that ‘quasi-standard’ products,
for example, those like the global precipitation measurement (GPM) mis-

sion (Hou et al., 2014) that have undergone substantial testing, perform

better. Additionally, they report that products incorporating both in situ

and satellite information (e.g., the Global Precipitation Climatology Pro-

ject) perform better than products based on a single data source.
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Fewer studies comparing extreme precipitation events

(e.g., events above the 90th percentile) exist. Many focus on climate

model simulations (Sunyer et al., 2015; Tryhorn & DeGaetano, 2011)

and trends (Bao et al., 2017; Janssen et al., 2014) while others evalu-

ate observations and satellite data (AghaKouchak et al., 2011;

Lockhoff et al., 2014; Pendergrass & Knutti, 2018). AghaKouchak

et al. (2011) compared extreme precipitation across four satellite plat-

forms and found trade-offs across products in terms of correct identi-

fication of precipitation above a threshold and measurements of the

volume of extreme storms. While they showed that some datasets

performed better than others in certain contexts, they ultimately con-

cluded that no single precipitation product was ideal for detecting

extremes because all of them failed to detect certain storms in certain

regions. Lockhoff et al. (2014) found that satellite retrieved extreme

precipitation values generally matched station-based precipitation

when using fuzzy metrics to evaluate agreement at larger spatiotem-

poral scales of ~330 km and 5 days. Pendergrass and Knutti (2018)

showed that precipitation was less temporally variable in coarser ver-

sus finer-resolution satellite precipitation datasets, suggesting that

coarser precipitation products may be unable to capture extreme pre-

cipitation to the same extent as higher resolution datasets. Other

studies primarily evaluated extreme precipitation indicators like 90th

percentile daily precipitation, extreme one-day precipitation and maxi-

mum number of consecutive wet days (Amitai et al., 2012; Manzanas

et al., 2014). These measures are meant to capture large storms that

happen on at least an annual basis rather than storms that trigger nat-

ural disasters (Manzanas et al., 2014; Sun et al., 2018).

This works builds on the handful of studies that have specifically

evaluated multiple precipitation products in the context of landslide

triggering (Brunetti et al., 2018; Chikalamo et al., 2020; Rossi

et al., 2017; Tajudin et al., 2020). For example, Rossi et al. (2017) com-

pared satellite and gauge precipitation data preceding landslide events

in Italy, using intensity–duration thresholds as a part of the compari-

son. They found that data from tropical rainfall measuring mission

(TRMM) satellite products (Kummerow et al., 1998) tend to underesti-

mate gauge data, particularly in mountainous areas where landslides

are most likely to occur. Brunetti et al. (2018) similarly found that sat-

ellite precipitation from four products tended to underestimate rainfall

relative to ground based observations. Both studies ultimately con-

cluded that the satellite data could still be useful for forecasting land-

slides as long as issues of local bias could be accounted for.

The intensity–duration threshold is a type of two-parameter sta-

tistical model used for landslide early warning systems, where rain-

storms plotting above the threshold curve are predicted to cause

landslides (Scheevel et al., 2017). The curves are typically based on a

power law (e.g., I¼ aD�b) of average precipitation intensity during

a window of time (I) as a function of duration (D) with fitted parame-

ters a and b. These power laws are valid in a particular region or cli-

mate and for a range of durations depending on the training data

(Guzzetti et al., 2008). Other statistical rainfall thresholds have been

proposed, but generally rely upon either intensity or duration or both

(Galanti et al., 2018; Leonarduzzi et al., 2017.

The focus of this analysis is to quantify precipitation uncertainty

associated with known historical landslides, and to examine the role

of this uncertainty in modelling landslide hazards. Given the wide-

ranging issues associated with precipitation estimation cited above,

this study presents a multi-product, multi-site analysis focused on

landslide-triggering storms. We address an existing gap in evaluating

extreme precipitation through the lens of rainfall-triggered landslide

hazards, while conducting inter-product analyses into storm charac-

teristics of potential relevance for the hydrological community. The

inter-comparison includes four precipitation products including those

based primarily in gauge, radar, and satellite measurements. We

thereby advance the analyses by Rossi et al. (2017) and Brunetti

et al. (2018) comparing satellite and gauge products in the evaluation

of landslide hazards, by additionally including ground-based radar and

by rigorously analysing each precipitation estimate preceding specific

landslide events. Finally, when precipitation is within warning systems

or guide recovery efforts from landslides, the timeliness, that is, low

latency, of the information matters (Kirschbaum et al., 2012), such

that the issue of latency will also be considered in the investigation of

intensity–duration thresholds. Greater understanding of the areas

of relative agreement and any divergence across products may pro-

vide guidance to practitioners and researchers choosing among pre-

cipitation products for studying landslides.

2 | METHODS

We compared precipitation characteristics at known landslide sites

across the features of triggering storms, as well as relative to

intensity–duration thresholds of landslide occurrence. Rainfall-

triggered landslide sites were chosen from the NASA Global Land-

slide Catalogue (GLC; Kirschbaum et al., 2010) with a subset of

landslide locations verified with ancillary satellite imagery (see

Section 2.1). For each landslide location, precipitation was obtained

from four different products (see Section 2.2) and the precipitation

time series were split into individual storm events. For each storm,

key characteristics of total depth, duration, intensity, peak intensity,

and return period were calculated (Section 2.3). Finally, the

storm events were plotted relative to landslide intensity–duration

curves, with hit ratios (true positive rate) and false alarm ratios (false

positive rate) compared for each model-product combination

(Section 2.4).

2.1 | Study domain and landslide site selection

The NASA Global Landslide Catalog (GLC; Kirschbaum et al., 2010)

was chosen as the source of landslide locations for this study, since it

provides a large sample of rainfall-triggered landslide locations useful

for evaluating heavy rainfall events. The GLC shares many strengths

and weaknesses with other regional and global databases available

(Kirschbaum et al., 2010; Mirus et al., 2020). Though the GLC covers a

broad spatial and temporal domain, it suffers from problems of preci-

sion and completeness. The catalogue is comprised of a collection of

second-hand landslide reports made by organizations like the news

media, governmental organizations like departments of transportation,
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along with available scientific reports. This means that landslides that

nearby infrastructure and people are reported more frequently,

resulting in a substantial spatial bias towards populated areas. Land-

slide location accuracies range from ‘exact’ locations, to location

uncertainties between 1 km up to 50 km, depending on how specific

the source article was about the location (Kirschbaum et al., 2010).

Despite these limitations, the GLC was deemed fit for the purposes of

this study, which is not to study landslide mechanisms and spatial dis-

tribution, but rather to compare precipitation data from different

products in the vicinity of hydrologically triggered landslides where

heavy rainfall events are likely to be present. Overall, the GLC pro-

vided a substantial number of landslide locations (n = 177) for this

study that met the following selection criteria:

• Only landslide events reported as rainfall-driven, with a GLC trigger

category of ‘rain’, ‘downpour’, ‘continuous_rain’, or ‘flooding’
were included. Though all the events in the GLC are rainfall-trig-

gered, some of the designated triggering mechanisms are more

complex, involving other factors such as earthquakes or dam

embankment collapse. In particular, landslides with snow- and

freeze–thaw-related triggers were not included even though these

are hydrologically driven, because their precipitation is not con-

temporaneously linked with landslide triggers.

• The GLC contains many types of mass movements. The term ‘land-
slide’ in particular is somewhat ambiguous, and is used by the cata-

logue when no additional information was available to classify the

mass movement. We have eliminated categories that are sugges-

tive of deep-seated landslides such as ‘translational slide’, ‘rota-
tional slide’, or ‘complex’, in an effort to ensure that the analysed

landslide categories are suited to this analysis.

• Landslide events took place in the continental United States

(CONUS) or Canada below 60�N and after May 2015 ensuring data

availability across each of the selected precipitation products.

• The landslide location accuracy was reported to be 10 km or less.

The value of 10 km was chosen since it is approximately equal to

the spatial resolution of two of the precipitation products.

• The landslide size was reported as ‘medium’ or larger so as to

reduce the likelihood that precipitation datasets at a resolution of

1.1 km or coarser might not be able to detect the triggering storms

• Precipitation above the threshold of 1 mm/h was measured by at

least one of the four precipitation sources selected for the inter-

comparison at some point on the day of the landslide.

In total, 177 landslides were selected (see Figure 1). The GLC also

contains information about the underlying mass movement mecha-

nism, or landslide type. According to the GLC classification, the mass

F IGURE 1 Map of all landslide sites considered in this analysis: 177 landslide sites coloured by whether the location was approximate
(n = 113) or verified using aerial satellite imagery to identify a visible scarp (n = 64); source of landslide locations was the GLC (Kirschbaum
et al., 2010), source of the DEM data used for the base map (North America Elevation 1-Kilometer Resolution, 2007). Elevations above 3000 m
are indicated as the highest value on the colour scale
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movements included in this study were dominated by ‘landslide’ and
‘mudslide or debris flow’ types (36% and 50%, respectively), with the

remaining 14% being ‘rock fall’ and other types. A prior study

(Guzzetti et al., 2008) of intensity–duration thresholds (the primary

method of comparison used in this study) concluded that there was

no significant difference between thresholds fit to shallow slope fail-

ures as compared to debris flows. Since there is no mass movement

type corresponding to shallow slope failures in the GLC, a visual com-

parison of the distributions of intensity and duration of the storms is

included in this study in Figure 2. We note that there is little differ-

ence in the storm intensity among different types of landslides, but

that the mean duration of the storms that trigger mudslides or debris

flows seems to be less than other types of mass movements by 6–

11 h depending on the precipitation product. As illustrated by this

example, the inclusion of multiple mass movement types is a potential

source of error in the intensity–duration curve analysis for events that

lie close to the threshold. Nonetheless, we conclude that the larger

sample size available by using all landslide types was preferred to sep-

arating by type for the purposes of this analysis.

Of the included events, the exact locations for 64 sites were veri-

fied by a trained technician searching for a landslide scarp in visible

satellite images of the terrain near the specified landslide location.

The location specified by the GLC was used for the remaining land-

slides where 25 were marked in the GLC as ‘exact’ locations, 39 as

1 km, 41 as 5 km, and 8 as 10 km accuracy. Figure 1 shows that many

of the sites are located near the Pacific coast, likely due to the pres-

ence of complex topography associated with landslides, as well as the

population reporting bias of the GLC. The verified landslides are gen-

erally distributed evenly relative to the locations of the full selection

of landslides.

2.2 | Precipitation data sources

The gridded precipitation datasets in this study were chosen to be

reflective of three common measurement methods: gauges, ground-

based radar, and satellite. We were interested in products that are

freely available, have undergone extensive verification, and extend

over at least the CONUS. An important additional criterion was that

products be available at an hourly temporal resolution or finer in order

to compute the characteristics of individual storm events. We further

sought to include products with multiple latencies where available.

The above criteria resulted in the four precipitation products

described in Table 1 and summarized below. For each product, data

were included from 2 June 2015 to 30 June 2018 in order to provide

coverage for all the included landslide events, which span from

4 September 2015 to 11 July 2017.

2.2.1 | North American land data assimilation
system version 2 meteorological dataset

The North American Land Data Assimilation System version

2 (NLDAS-2) meteorological dataset (Xia et al., 2012) is a combination

of daily gauge-based National Center for Environmental Prediction

(NCEP) Climate Prediction Center (CPC) precipitation with orographic

corrections and hourly NCEP Doppler radar-based precipitation. The

gauge-based estimates are disaggregated to hourly data using the

radar-based estimates, resulting in a near real-time hourly gridded

product at 0:125� (~12 km) resolution across North America going

back to 1979 with a latency of approximately 4 days. Though it has

coarser horizontal resolution relative to the other precipitation

F IGURE 2 Storm characteristics by landslide type: Kernel density estimates for each precipitation product are shown for the duration (h, in
panel (a)) and intensity (mm/h, in panel (b)) of landslide-triggering storms. Distributions are separated by the landslide type, where ‘landslide’
describes unknown types
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products used here, NLDAS-2 meteorological is a widely used gauge-

based product that has been extensively validated over a recent

period overlapping with this study (Livneh et al., 2015; Long

et al., 2014; Xia et al., 2016).

2.2.2 | Multi-radar multi-sensor quantitative
precipitation estimate

Multi-radar multi-sensor (MRMS) precipitation estimates are primar-

ily based on a centralized radar mosaic with 2-min resolution over

the United States and Canada. This study uses an hourly version that

also integrates data from numerical weather prediction, satellites,

gauges, lightning sensors, and precipitation models (Zhang

et al., 2015). While both NLDAS-2 and MRMS estimates contain

common information from gauges and radar, the NLDAS-2 product is

primarily a gauge-based estimate while MRMS focuses on radar

inputs. MRMS is the precipitation product with the shortest period

of record among the products selected for this study, and so there

are relatively few years of data for validation. However, it has by far

the highest resolution at 0.01� (~1.1 km) and represents the state of

the art in terms of leveraging computing resources to take advantage

of a multitude of overlapping radars augmented by other types of

sensors.

2.2.3 | Integrated Multi-satellitE Retrievals for GPM

Integrated Multi-satellitE Retrievals for GPM (IMERG) precipitation

estimates are a combination of multiple satellite measurements,

including the GPM Core Observatory Microwave Imager which is con-

sidered the standard for the other included satellites. In addition to

active and passive microwave sensors, IMERG estimates include

infrared sensors, satellite-based radar, and precipitation gauge adjust-

ments. The gauge data are used for monthly bias correction (Huffman

et al., 2020). There are three IMERG products, Early, Late, and Final,

of which we use the Early (~4-h latency) and the Final (~3.5-month

latency) in this study. The IMERG-Early product is available much

more promptly than the IMERG-Final, but as a result some of the sat-

ellite retrievals do not arrive soon enough to be incorporated into the

product. In addition, IMERG-Early cannot take advantage of some

processing steps such as monthly gauge correction because they

require data that have yet to be collected at the time of the release

(O et al., 2017). IMERG-Final is recommended for research applica-

tions as being the most accurate but would not be useful for

predicting landslides in a timely fashion (Huffman et al., 2020). Since

IMERG products use the GPM active and passive microwave data as a

standard with little-to-no information from gauges, they are funda-

mentally different from many other precipitation products available.

2.3 | Precipitation inter-comparison and
computation of storm characteristics

For each of the precipitation products, data were extracted for the

precipitation grid enclosing the landslide location for the period

between May 2015 (the earliest date MRMS data are available) and

May 2020 (the latest release of IMERG-Final data at the time of this

analysis). Following Dinku et al. (2008), a minimum threshold of

1 mm/h was applied to the precipitation data to reduce noise. The

data were then split into storm events, where a minimum inter-event

time (MIT) criterion of 24 h was considered to mark the end of one

storm and the beginning of the next as described in Dunkerley (2008).

Though Dunkerley (2008) notes that a longer MIT is associated with

detecting lower mean event intensity values, we have chosen this

length because it is consistent with the temporal accuracy of the vast

TABLE 1 The four precipitation products included in the comparison, representing gauge-, radar-, and satellite-based measurements

Precipitation product Description

Spatial

resolution

Temporal

resolution

Typical

latency

North American Land Data Assimilation

System version 2 (NLDAS-2)

meteorological dataset (Xia et al., 2012)

Disaggregation of climate prediction centre daily

precipitation using bias-corrected radar

0:125� (~12 km) 1 h 4 days

Multi-radar multi-sensor (MRMS; Zhang

et al., 2015)

Integrates data from radars, satellites,

precipitation gauges, and other sensors to

provide near real-time decision support

0:01� (~1.1 km) 1 h <5 min

Integrated Multi-satellitE Retrievals for

Global precipitation measurement early

run (IMERG-Early; Hou et al., 2014)

Global network of satellites unified by

measurements from a single reference radar/

radiometer satellite

0:1� (~10 km) 30 min 4 h

Integrated Multi-satellitE Retrievals for

Global precipitation measurement

(IMERG-Final; Hou et al., 2014)

In addition to the satellite data included in

IMERG-Early, IMERG-Final includes late-

arriving microwave overpasses, monthly gauge-

based adjustments, and an algorithm that

interpolates forward as well as backward in

time

0:1� (~10 km) 30 min 3.5 months
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majority of the GLC landslides which are reported with a date alone.

At a minimum, the 24-h MIT ensures that the landslide-triggering pre-

cipitation will be captured.

For each storm, the characteristics of total depth (mm), duration

(h), mean intensity over the total event duration (mm/h), peak inten-

sity (mm/h), and return period were computed and compared. The

peak intensity for a storm was the intensity of the single maximum

precipitation measurement of the storm at the resolution of the prod-

uct in question. Depth and return period were chosen since they

reflect the most common metrics used in extreme hydrologic events

(England Jr. et al., 2019). Mean intensity and duration were included

because they are parameters commonly used to study rainfall-

triggered landslides (Kirschbaum et al., 2012). Previous studies have

suggested that in certain cases, high peak intensity can contribute sig-

nificantly to triggering a landslide independent of the overall storm

depth, duration or intensity (Corominas et al., 2002; Yu et al., 2006).

This idea is supported for example by observations that landslides are

commonly initialized within hours of the peak intensity (Premchitt

et al., 1986). For each metric, the range of values among each precipi-

tation product was also computed by subtracting the minimum from

the maximum measured values for each event. The average and maxi-

mum ranges are reported in order to illustrate the level of variability

among products.

To facilitate comparison of storm characteristics within a single

over-arching framework, the return period of the landslide-triggering

storms was computed using the NOAA precipitation atlas frequency

estimations (US Department of Commerce, 2013). The NOAA atlas

provides return periods for discrete precipitation durations, namely

1, 2, 3, 6, 12, 24, 48, 72, 96, and 168 h. To define a consistent return

period for each storm, we used the maximum precipitation value for

each applicable NOAA atlas duration rather than attempting to

expand the storm duration to one of the NOAA atlas durations which

might have artificially lowered the return periods. For example, for the

3-h duration, cumulative 3-h precipitation totals were calculated for

each time step of the storm, and the maximum value chosen. The

return period for this maximum value was then retrieved from

the NOAA atlas. We then selected the maximum return period from

among the 10 possible durations noted above for each landslide. For

example, if the maximum 3-h precipitation during the MIT-defined

storm event had a 25-year return period while the maximum 48-h

precipitation during the storm event only had a 2-year return period,

the return period of the 3-h interval would be used in preference over

the return period of the 48-h interval or any other duration where the

return period was less than 25 years. This procedure ensured that we

used the maximum applicable return period available from the NOAA

atlas that occurred during each landslide-triggering storm. Values less

than a 2-year return period are not included in the NOAA atlas, such

that return period values were only assigned for a subset of landslide-

triggering storms that exceeded that threshold. Return period data

were also unavailable for Canadian sites.

The measurement uncertainty in the total magnitude of

precipitation occurring on the day of the landslide as measured

by each product was also compared using two metrics: rank and

z-score. Rank was calculated for each event among the four prod-

ucts, and so it is reported as a number ranging from one to four for

each event that shows the tendency of each product to measure

higher or lower values than other products. We expect that prod-

ucts with consistently higher ranks will tend to have more false pos-

itive landslide predictions, while those with consistently lower

ranks may tend to miss true positive events. By using the rank, we

quantify uncertainty in the form of biases relative to the other

products in the study. The z-score conversely was calculated for

each event and product among all the other days of precipitation as

measured by the same product in the May 2015–May 2020 histori-

cal record. The distribution of z-scores highlights the variability of

each product relative to the others. The differences in z-scores also

quantify uncertainty in the degree to which landslide-triggering pre-

cipitation can be statistically separated from other precipitation for

each product.

2.4 | Application of intensity–duration thresholds
using different precipitation products

Intensity–duration thresholds are a category of simple models of land-

slide occurrence whereby a threshold is defined as a power law of the

storm duration

I¼ aD�b ð1Þ

where I is intensity, D is duration, and a and b are fitted parameters to

a particular dataset. Intensities above the threshold are used to pre-

dict the occurrence of a landslide (Segoni et al., 2014). A range of

thresholds have been calculated under different climates and over

multiple scales (Caine, 1980; Kirschbaum et al., 2012; Scheevel

et al., 2017). Four thresholds for this study (see Table 2) were

obtained from a review by Guzzetti et al. (2008) as a way to test the

sensitivity of our results to the choice threshold. From the myriad

thresholds presented in the Guzzetti et al. (2008) review, we chose

those that met the following requirements:

• The threshold type was an intensity–duration threshold and not,

for example, normalized by mean annual precipitation, since the

relatively short precipitation record of some of the data sources in

this study (<5 years) was deemed too short to compute a reliable

climatology.

• A spatial domain covering a large portion of the study area.

• A sample size of n > 25 events once climatic, mass movement type,

and duration restrictions were applied to the data.

• Only thresholds based directly on data, as opposed to those based

on probability estimates of precipitation, were considered.

• One threshold (Caine, 1980) was eliminated because it was based

on data from sites that had been verified to be undisturbed prior

to the landslide, which resulted in a much higher threshold than

those based on inventories that, like the GLC, did not screen for

disturbance.
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Further, thresholds were only applied to applicable subsets of the data

based on the restrictions of each threshold, which included climate

zone, mass movement type, and triggering storm duration. Specifi-

cally, since the Guzzetti et al. (2008) thresholds were defined for

Koppen climate zones Csa and Csb (temperate, dry summer, hot and

warm summer respectively) only data falling in the corresponding cli-

mate zones (Beck et al., 2018) were considered for those thresholds.

The other two thresholds were limited on the basis of landslide types.

Table 2 includes the GLC landslide types that correspond to the

threshold definition in addition to applied restrictions.

For each threshold-product combination, we computed a hit ratio

(correctly predicted landslides over the total number of landslides), a

false alarm ratio (incorrectly predicted landslides over the total num-

ber of non-landslides), and a frequency bias (predicted landslides over

observed landslides). The hit ratio and false alarm ratio tend to be

inversely linked measures of whether the model tends to over- or

under-predict landslides. Frequency bias adds an additional measure

of whether or not an ID threshold is identifying landslide events at

the same overall rate that they occur. In computing these metrics for

multiple ID thresholds, we examine the degree to which landslide haz-

ard assessments are sensitive to both uncertainty in precipitation

measurements and uncertainty in the threshold itself.

3 | RESULTS

The four precipitation products examined in this study exhibit a great

deal of variability in the time period leading up to a landslide event.

As an example of the magnitudes and qualitative characteristics of

that variability, Figure 3 shows the cumulative precipitation in the

30 days before a landslide at five sites. The selected sites showcase

multiple ways in which precipitation can differ among the products.

For example, while the precipitation in panel (a) matches fairly closely

for all products, in panel (b) precipitation still appears to be correlated

but also demonstrates a factor of two spread of precipitation values.

In panel (c) the IMERG products diverge substantially from the

ground-based products early on in cumulative volume, but the

landslide-triggering storm is recorded as nearly twice as large by the

satellite-based products, demonstrating that the differences in precip-

itation measurement can partially cancel out in the right situation. In

panel (d) the IMERG-Early product reports nearly doubled precipita-

tion values throughout while all three of the remaining products are

very similar. Among the events where IMERG-Final recorded a much

lower than average value, it was common for the high average to be

driven by the IMERG-Early measurements almost exclusively, as

shown here in panel (d). Panel (e) shows a likely landslide location

error since none of the products register any precipitation close

to the time of the event. Such events were not included in this analy-

sis of landslide-triggering storms because no such storm could be

identified.

The variability among products is also evident in the distribution

of daily precipitation rank among products and z-score within prod-

ucts. The relative magnitude of the different precipitation products on

the day of the landslide is shown in Figure 4 in terms of the rank

among the four products for each day, and z-score among all non-zero

data for a particular product. Both day-of-landslide precipitation and

all other non-zero days in the study period are shown for comparison.

The ranks of each product do not reveal substantial biases across the

entire precipitation record, with the exception of MRMS which has a

larger proportion of above-median ranks than the other products (see

Figure 4(a)). On landslide-days only, the IMERG products have lower

ranks overall, revealing greater uncertainty in measurements of these

extreme events as well as a systematic bias in the satellite products

relative to ground-based products. This idea is reinforced by the z-

scores of the precipitation among measurements from the product

and landslide site. Though the median z-score is similar for all products

across the entire record (see Figure 4(c)), it is lower for both IMERG

products on the day of the landslide. Conversely, some outliers in the

IMERG-Early have the highest z-scores among day-of-landslide pre-

cipitation (see Figure 4(d)), even though the median and third quartile

values are higher for IMERG-Final. This suggests that the further

processing of the IMERG-Final product reduces unusually high precip-

itation measurements while also increasing low values. For all prod-

ucts, each quartile of the day-of-landslide precipitation is larger than

that of the non-landslide-triggering precipitation, though none of the

maximum precipitation z-scores appears to have occurred on the day

of the landslide.

Variability among the precipitation products is also revealed in a

comparison of day-of-landslide precipitation with mean values among

each of the products. Figure 5 shows the characteristics of the

landslide-triggering storms plotted against the ensemble mean of all

the products for all the landslide sites and separately for the verified

locations. It also includes depth, duration, mean intensity, and peak

intensity plotted against the ensemble mean for all storms in the study

TABLE 2 Four intensity–duration (ID) thresholds used in the analysis

Threshold source Equation Restrictions GLC landslide types

Clarizia et al. (1996) I = 10 � D�0.77 Soil slips Landslide

Crosta and Frattini (2001) I = 0.48 + 7.2 � D�1.00 Soil slips and debris flows Landslide, mudslide, debris flow

Guzzetti et al. (2008) I = 4.81 � D�0.49 Csa climate zone All

Guzzetti et al. (2008) I = 3.57 � D�0.41 Csb climate zone All

Note: The two Guzzetti et al. thresholds were derived by the same method for data from different climates. Landslide types are translated from the

threshold source to GLC categories. All thresholds are valid in the duration range of 0.1 h < D < 1000 h.
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period record. Landslide-triggering precipitation varies widely across

precipitation products with the depth of individual storm events

diverging by as much as 296 mm with an average range of 51 mm.

Peak intensity measurements which are typically influential in trigger-

ing landslides, were also highly variable with an average range of

7.8 mm/h and as much as 57 mm/h. Variation in storm depth is partic-

ularly visible among a set of outliers below a value of 10 mm

—corresponding with a fairly modest storm depth.

Among the verified locations, there is less variability than among

approximate locations. For depth, 53% of the approximate locations

have a greater percent difference than the median, while only 46%

are greater than the median for approximate locations. Likewise with

duration, 54% of the approximate locations have a percent difference

greater than the median while only 44% of the exact locations

do. This suggests that some of the uncertainty in precipitation for

these events is related to uncertainty in the landslide locations. Inter-

estingly, this result also implies that an accurate landslide location can

decrease precipitation uncertainty, and further suggests that there is

greater agreement among the precipitation products used in this

study about extreme events than about nearby, presumably less

extreme precipitation. Notably, many fewer points appear on the

return period plot than the other plots. This is partially due to NOAA

Atlas return periods being unavailable for 69 of the 177 events, for

example because they took place outside the CONUS. Another factor

is the categorical nature of the NOAA Atlas return period, which

results in overplotted data points when return periods are identical

across all precipitation data sources. In the cases of an additional

90 of the 108 records, the return period was calculated to be the

F IGURE 3 Exposition into the types of precipitation differences leading up to landslide events: Cumulative precipitation measurements at
select landslide sites for the 30 days before the event. The date of the landslide event is indicated by a vertical black line in each panel.
Precipitation is variable across the different products, and the selected sites each demonstrate diverse types of variability. Panel (a) shows similar
measurements among all products throughout the 30 days. In panel (b), all products are well correlated, but the accumulated depths greatly differ.
In panel (c) both IMERG products report less precipitation until the landslide-triggering storm when they reverse and report more precipitation
than MRMS and NLDAS-2. In panel (d) IMERG-Early reports much more precipitation than the other products. Finally, in panel (e) no landslide-
triggering precipitation was detected by any product, suggesting a location error in the landslide record
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minimum value of 2 years for every precipitation data source. As a

result, trends in return periods are highly sensitive to the handful of

events with meaningful return period information.

The two satellite products have a pattern of distinctive readings

relative to ground-based products in that they contain both the

highest and lowest values of several storm characteristics. The IMERG

F IGURE 5 Storm characteristics versus the ensemble mean: Depth (mm), duration (h), mean intensity (mm/h), peak intensity (mm/h), and
return period (year) for each of the landslide-triggering storms as measured by four precipitation products. Least-squares regression lines with
95% confidence intervals are also shown. Panels (a)–(e) show all 177 sites while panels (f)–(j) show the 64 verified locations. Panels (k)–(n) show
the depth (mm), duration (h), mean intensity (mm/h) and peak intensity (mm/h) for all storms in the climatology at all locations as a comparison

F IGURE 4 Relative magnitude of precipitation products on the day of the landslide: Rank among all products for each day, and z-score of
daily precipitation as measured by each product for each of 177 events. Panels (a) and (c) show the entire precipitation record while panels (b) and
(d) show only the day-of-landslide precipitation for comparison. Z-scores are plotted on a pseudo-log scale, a combination of a linear scale near
zero and a log scale for higher values
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products generally report higher peak hourly intensities for the storms

(see Figure 5(d),(i)) with the highest mean peak intensity, which is

likely at least partially due to the shorter 30-min time step. This phe-

nomenon is visible across all the storms in the study period, not just

those that triggered landslides. However, the trendline for the peak

intensity for both IMERG products crosses over to above average for

the landslide-triggering storms, while it does not for all storms,

suggesting that a larger proportion of landslide-triggering storms have

a larger-than-ensemble-average peak intensity than is generally the

case. The higher peak intensities are also reflected to some degree in

longer return periods for the IMERG-Early data, but not for the

IMERG-Final data. The return periods are based on hourly durations

or longer for comparison with the NOAA Atlas and therefore may be

less sensitive to half-hourly peak intensities. An examination of the

relationship between return period and peak intensity in Figure 6

shows a clear correlation between the log10 of the return period and

the peak intensity. The relationship between peak intensity and return

period is not surprising given that the return period values were calcu-

lated by searching for the most intense period of each NOAA atlas

duration. However, IMERG-Final has lower return periods overall

when all landslide locations are included despite reporting high peak

intensities. This anomaly disappears in an examination of verified loca-

tions alone. An examination of the 30-day precipitation record prior

to the landslide for sites where the IMERG-Final return period was

much lower than the average revealed that in most of those cases the

higher mean was driven primarily by anomalously high IMERG-Early

values not reflected in any of the other datasets. The IMERG-Early

product has higher return periods when considering the verified loca-

tions only, suggesting that the other products may not detect the

highest return period precipitation events as consistently.

The precipitation products are examined in the context of land-

slide triggering thresholds in Figure 7, with the performance summa-

rized in Table 3. Interestingly, the choice of intensity–duration

threshold does not appear to make a large difference in performance

because the threshold curves are more similar than the variation in

the precipitation data across sites and among products. The MRMS or

NLDAS-2 products tend to perform better than either IMERG prod-

uct, with hit ratios between 0.77–0.81 and 0.73–0.81 rather than

0.61–0.65 and 0.64–0.67 among the verified landslide locations,

respectively. Though NLDAS-2 performs similarly to MRMS on the hit

rate, its frequency bias is higher (62.2–85.5 among verified locations

as opposed to 49.1–66.5 for MRMS), indicating that it over-predicts

to a larger degree. All products perform comparably or better when

using only the verified landslide locations than they do when including

the approximate locations as well. All products also have very large

frequency biases, indicating excessive over-prediction.

Figure 7 shows a concentration of long-duration, low-intensity

storms that are in the vicinity of a 12-h duration for all products. This

pattern is illustrated in Figure 8, where it can be clearly seen that dis-

tributions of mean intensity values are comparable across precipita-

tion data source for low and high duration values, but that between

6 and 18 h duration the values for the IMERG products are somewhat

lower. Many of the storms that did trigger landslides but were not

correctly identified by the intensity–duration threshold fall into this

group of approximately 12-h low-intensity storms. We further note

that there are few landslide-triggering storms at the short-duration,

high-intensity end of the ID thresholds.

4 | DISCUSSION

The results of this analysis revealed substantial variation in the mea-

surements of the four precipitation products, perhaps to an even

greater extent than the already notable uncertainty in precipitation

measurements reported by other inter-comparisons (Adler

et al., 2003; AghaKouchak et al., 2011; Rossi et al., 2017; Sun

et al., 2018). We note that the uncertainty due to measurement

source in precipitation depths accumulated over these 30-day periods

are of the same order of magnitude as the annual error in depth

reported for products of the same category by Sun et al. (2018). This

discrepancy may be due to increased variability across products of dif-

ferent categories, for example, satellite versus radar, in contrast with

the figure from Sun et al. (2018) which includes only satellite

products.

Among the precipitation products chosen for this study, the two

IMERG products identify higher peak intensities relative to the other

products. These peak intensities are lower than the highest landside-

triggering intensities for data in the Guzzetti et al., 2007 review of ID

thresholds, which lie above 100 mm/h and typically have hourly or

half-hourly durations. Nonetheless they are within typical values for

landslide-triggering storms from a variety of areas compared in

Guzzetti et al., 2007. This discrepancy could be due to the 24-h MIT

chosen for this study, which is on the longer side, chosen to corre-

spond with the temporal accuracy of the landslide data. These storms

F IGURE 6 Relationship
between peak intensity and
return period: Scatter plots of the
peak intensity (mm/h) and return
period (year) for each of four
precipitation products. A least-
squares regression line is also
shown
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F IGURE 7 Comparison of landslide-triggering precipitation relative to intensity–duration thresholds: Each storm in the precipitation record
and established global or climactic intensity–duration thresholds. Landslides are coloured according to their climate or landslide-type category and
ID threshold curves are coloured by their restrictions. Landslide-triggering storms are shaded in darker colours. The panels (a)–(h) contains
precipitation data for all sites while in panels (i)–(p) only verified sites are included. Points above each threshold are predicted by the threshold to
be landslides, and so a larger proportion of landslides plotting above the threshold indicates better performance
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may be an artefact of the MIT storm identification algorithm. Since

the landslides did not have times specified, the entire day of the land-

slide was always included unless there was no rain until the end of the

day, and this may have extended some storms past when the landslide

occurred. This would have the effect of computing lower total inten-

sity values for storms that lasted only through the time of the land-

slide but persisted at a much lower intensity thereafter. In addition,

Dunkerley (2008) notes that MIT and the mean event precipitation

intensity are inversely correlated. An alternative landslide database

with more accurate temporal information could have helped to

address this issue, although at the time of publishing we are not aware

of any landslide inventories in the study area that provide larger

numbers of landslide sites with sub-daily temporal resolution. Another

possibility is that the precipitation data used in Guzzetti et al., 2007

were available in sub-half-hourly increments, and so were able to

detect higher intensity events than even the IMERG products used

here. Finally, a substantial portion of the events occurred in regions

that are arid and prone to wildfire. It is possible that some of the land-

slides took place in areas affected by some kind of disturbance that

increased landslide hazard, or simply places where 10–40 mm/h of

precipitation was sufficient to trigger a landslide.

Interestingly, the IMERG products also detect more anomalously

low precipitation values, leading to greater uncertainty in precipitation

detection and artificially extended storm durations. Low-intensity

TABLE 3 Hit ratio and false alarm ratio for each product and the Clarizia et al. (1996) [1], Crosta and Frattini (2001) [2], and Guzzetti
et al. (2008) Csa [3] and Csb [4] intensity–duration thresholds

ID threshold:

Hit ratio False alarm ratio Frequency bias

1 2 3 4 1 2 3 4 1 2 3 4
Product Include sites

NLDAS-2 All (n = 131) 0.67 0.72 0.66 0.71 0.22 0.31 0.26 0.32 57.7 80.9 67.6 83.0

Verified (n = 55) 0.75 0.78 0.73 0.81 0.25 0.34 0.28 0.34 62.2 85.0 70.9 85.0

MRMS All (n = 134) 0.71 0.73 0.71 0.74 0.24 0.34 0.29 0.35 40.8 56.3 47.9 58.1

Verified (n = 56) 0.77 0.77 0.78 0.81 0.27 0.37 0.31 0.37 49.1 66.2 55.3 66.5

IMERG-Early All (n = 146) 0.57 0.63 0.61 0.63 0.2 0.27 0.25 0.29 65.1 86.1 78.1 93.4

Verified (n = 59) 0.63 0.65 0.61 0.61 0.23 0.3 0.27 0.32 68.4 89.0 80.3 95.0

IMERG-Final All (n = 145) 0.6 0.64 0.6 0.62 0.22 0.3 0.27 0.32 69.9 95.0 84.3 100.9

Verified (n = 56) 0.65 0.67 0.64 0.64 0.25 0.34 0.3 0.36 75.9 100.6 90.4 106.1

F IGURE 8 Comparison of mean intensity values for each precipitation source: The distribution of mean intensity values for each precipitation
product shown as boxplots. The data are split into seven duration bands of equal width on a logarithmic scale
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precipitation in all products was associated with long duration storm

events (see Figure 7), which may occur because of low-intensity pre-

cipitation slightly above the 1 mm/h threshold that extended the

MIT-computed duration of the storm and thereby reduced its overall

intensity. The IMERG products were particularly vulnerable to the

identification of long-duration low-intensity storms, resulting in a high

miss rate that is unsuitable for landslide prediction or hazard detec-

tion. However, it is possible that the low-intensity storms are an arte-

fact of the 24-h MIT method used in this study to separate storms.

This hypothesis is supported by the concentration of low-intensity

24-h events identified by the MIT algorithm. Those long-duration

low-intensity storms had the effect of producing misses (false nega-

tives), thereby lowering the hit ratio to such an extent as to practically

disqualify the use of the IMERG products for prediction purposes.

Because the IMERG products were able to identify higher intensity

precipitation than the other products, it is possible that they would in

fact perform better for identifying landslides if the low-intensity

storms were eliminated through use of a different method of precipi-

tation event separation. Further investigation is needed to determine

a more suitable method, such as the method used in Rossi

et al. (2017) in which events were separated not only if there was no

rainfall for a specified period of time but also if precipitation fell below

a minimum value.

A caveat to this study is that many of the events used in the analy-

sis were labelled ‘landslide’ in the GLC, meaning that the specific mech-

anism was unknown. Though there is some evidence in a prior study of

ID thresholds (Guzzetti et al., 2008) that the same ID threshold can be

used for shallow slope failures and debris flows despite differing mass

movement mechanisms, it is possible that some of the events labelled

as landslides were in fact neither of these two but instead a rock fall or

deep-seated landslide. We observed a small difference between the

precipitation distributions for debris flows/mudslides and other types

(see Figure 2), with debris flows/mudslides having a lower duration

than landslides or rock falls. However, despite this difference the differ-

ent types of mass movements had relatively similar distributions of

both intensity and duration. This result suggests that even if some

deep-seated landslides were unclassified and subsequently included in

the study, they are not unduly impacting the results.

All precipitation products performed reasonably well at identifying

landslides using the published intensity–duration thresholds particu-

larly considering that these thresholds were developed on training data

from different datasets spanning large regions. However, they did not

perform as well at excluding false alarms, most likely because of factors

beyond intensity and duration that can influence landslide occurrence

such as topography, soil type, recent wildfire or disturbance or land

development. The prevalence of false alarms is an inherent weakness

of ID threshold models, which do not include many of the variables

which affect landslide occurrence. In addition, as noted above, ID

thresholds are sensitive to uncertainty in precipitation measurements.

As a result, such threshold models cannot be used to predict specific

landslide events and are better suited for representing regional

changes in landslide hazards as a result of climate change or other

disturbances.

An additional weakness of ID threshold models limiting their use-

fulness for specific predictions is the false alarm rate. This indicator of

landslide hazards has the potential to help quantify regional changes

in landslide hazards as a result of projected changes in precipitation

patterns. Furthermore, as the boundaries of climate regions migrate

over time, applying alternative intensity-duration thresholds devel-

oped in locations that are more representative of the future climate in

a particular region may be more informative than relying exclusively

on historical intensity-duration thresholds developed for the area.

Additionally, while the issue of different mass movement mecha-

nisms does not appear to affect ID threshold performance on a large

scale with current levels of model performance (Guzzetti et al., 2007),

it may explain the incidence of, for example, high-intensity storms that

do not trigger landslides because they are located in an area that is

more prone to a landslide type commonly triggered by soil saturation.

For all of these reasons, some of the high-intensity precipitation that

did not trigger any recorded landslides could be more reflective of

adjacent areas that are not as susceptible to landslides. Conversely a

landslide at a highly susceptible location, such as an area with high

slopes that had recently been burned by wildfire, could be triggered

by less intense rain, potentially resulting as a miss on an intensity–

duration curve. Even the 1.1 km resolution of the MRMS data could

contain substantial variation in landslide susceptibility within an indi-

vidual grid cell, leading to location-based uncertainty in the precipita-

tion values, especially when combined with uncertain landslide

locations. The poorest performing products were the IMERG products

because despite their detecting more high-intensity precipitation

events they also detected many low-intensity long-duration events

that nonetheless triggered landslides.

Both Rossi et al. (2017) and Brunetti et al. (2018) also found satel-

lite products did not perform as well as gauge data relative to

intensity–duration thresholds, as a result of underestimating precipita-

tion. Therefore, it was not surprising that the intensity–duration

thresholds performed more poorly at identifying landslides when

applied to satellite data in this study as well. However, Rossi

et al. (2017) found that adjusting the threshold accounted for precipi-

tation bias, suggesting that the pattern of lower intensities was more

or less uniform across different durations. Our study supports this

finding. The lower false alarm ratios and comparable frequency bias

suggest that the satellite products might perform better with a bias-

adjusted threshold. By contrast, as illustrated in Figure 8 we found

that the low-intensity values were more often clustered around a rela-

tively narrow duration band, which would be more challenging to

bias-correct. Though the intensity–duration thresholds still show

promise for diagnosing landslides using satellite-based data, the

adjustments to improve performance may prove more complex for

the IMERG products across the broader spatial domain of the conti-

nental United States and Canada.

MRMS and NLDAS-2 are relatively low latency products. In the

case of IMERG-Early the short latency seemed to come at a cost of an

exaggeration of the weaknesses and strengths of IMERG in identifying

landslides. In particular, IMERG-Early had the greatest prevalence of

low storm intensities, and so it ultimately performed the worst at
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landslide identification (see Table 3). Without changes to the precipi-

tation processing, the low latency does indeed appear to be a liability

in this case.

Precipitation measurements at verified landslide sites tended to

be of higher magnitude than those at sites with approximate locations

for all products. The intensity–duration thresholds subsequently per-

formed better at verified locations across all precipitation products.

This finding corresponds with the conclusion of Leonarduzzi

et al. (2017), who found that a high-quality landslide database

improved ID threshold performance far more than other interventions

such as regionalization. Though this difference remains unexplained,

one possibility is that some of the approximate landslide locations

were too far away from the true landslide location for the precipita-

tion measurements to be representative. The issue of poor location

accuracy is especially likely to cause difficulties for evaluating land-

slide hazards, since landslides typically occur in areas with steeper

slopes, and the precipitation in these mountainous environments has

a high degree of spatial variability (Buytaert et al., 2006;

Diodato, 2005). Alternatively, there may have been other factors such

as sparse vegetation cover that made it more difficult to locate land-

slides on satellite imagery and also lowered the precipitation threshold

that would trigger a landslide. Since work on this study began, a com-

pilation of U.S. landslides has been released by the USGS (Mirus

et al., 2020) which would also be a suitable source of landslide loca-

tions with perhaps greater location precision that could help resolve

this question in future work along the same lines.

5 | CONCLUSION

The precipitation products chosen for this study represent diverse

measurement techniques that often recorded large differences in pre-

cipitation leading up to the landslide events evaluated here. As a

result of this uncertainty, each precipitation product differed in overall

performance in predicting landslides using ID thresholds. Overall, the

choice of ID threshold curves was not as consequential as the choice

of precipitation product in identifying landslides. Products that rely on

ground-based sensors showed a more consistent landslide signal

despite generally recording lower peak intensities.

Though it was hypothesized that half-hour or 1-h peak intensity

would be an important factor in identifying landslides, the results sug-

gest instead that removal of noise on the low end may be more impor-

tant. A particular challenge was the presence of low-intensity, long-

duration storms preceding landslide events, most prevalent in the

IMERG products. A more expansive evaluation of processing tech-

niques for separating storms may potentially mitigate these issue,

although each technique will produce artefacts in the comparisons.

Another potential avenue for addressing this problem is to combine

multiple datasets, since the low-intensity long-duration storms did not

appear in all datasets to the same degree.

Another limitation to the study of landslide-triggering storms is

the general lack of both exact landslide locations and specific time of

day of the landslide events. The location limitation was reflected in

better performance for verified landslide locations as compared to

approximate locations, which implies that some of the approximate

locations were incorrect to such an extent that the precipitation mea-

surements were misaligned. This problem could be addressed by more

extensive manual searches such as the one used in this study that

identified the 64 verified landslide locations, or perhaps in the future

by machine learning methods. An additional option for potentially

more accurate landslide location and timing data is the recently

released USGS database mentioned above.

Using the methods tested in this study, those practitioners

attempting to use intensity–duration thresholds as operational land-

slide models would do well to select a product like MRMS that has

extremely low latency and performs well at identifying landslides. The

other ground-based product with substantial gauge- and radar-based

inputs, NLDAS-2, did not perform as well as MRMS, suggesting that

the high spatial resolution of MRMS (~1.1 km) is a key feature when it

comes to landslide identification. None of the products were particu-

larly good at filtering out false alarms of landslides. Therefore, practi-

tioners are advised to use intensity–duration thresholds as a hazard

and risk assessment tool over larger regions rather than as direct pre-

dictions for specific locations. An additional recommendation would be

for practitioners to consider more than one precipitation product, that

is, multiple precipitation estimates simultaneously, as a way to confirm

stronger precipitation signals and to minimize the influence of noise.
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